Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38472880

RESUMO

The aim of this research was to apply an electronic device as indirect predictive technology to evaluate toxic chemical compounds in roasted espresso coffee. Fresh coffee beans were subjected to different thermal treatments and analyzed to determine volatile organic compounds, content of acrylamide and 5-hydroxymethylfurfural, sensory characteristics and electronic nose data. In total, 70 different volatile compounds were detected and grouped into 15 chemical families. The greatest percentage of these compounds were furans, pyrazines, pyridines and aldehydes. The positive aroma detected had the intensity of coffee odor and a roasted aroma, whereas the negative aroma was related to a burnt smell. A linear relationship between the toxic substances and the sensory defect was established. A high sensory defect implied a lower content of acrylamide and a higher content of 5-hydroxymethylfurfural. Finally, electronic signals were also correlated with the sensory defect. This relationship allowed us to predict the presence of these contaminants in the roasted coffee beverage with an indirect method by using this electronic device. Thus, this device may be useful to indirectly evaluate the chemical contaminants in coffee beverages according to their sensory characteristics.

2.
Molecules ; 28(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38138621

RESUMO

Neurodegenerative diseases are associated with oxidative stress, due to an imbalance in the oxidation-reduction reactions at the cellular level. Various treatments are available to treat these diseases, although they often do not cure them and have many adverse effects. Therefore, it is necessary to find complementary and/or alternative drugs that replace current treatments with fewer side effects. It has been demonstrated that natural products derived from plants, specifically phenolic compounds, have a great capacity to suppress oxidative stress and neutralize free radicals thus, they may be used as alternative alternative pharmacological treatments for pathological conditions associated with an increase in oxidative stress. The plant species that dominate the Mediterranean ecosystems are characterized by having a wide variety of phenolic compound content. Therefore, these species might be important sources of neuroprotective biomolecules. To evaluate this potential, 24 typical plant species of the Mediterranean ecosystems were selected, identifying the most important compounds present in them. This set of plant species provides a total of 403 different compounds. Of these compounds, 35.7% are phenolic acids and 55.6% are flavonoids. The most relevant of these compounds are gallic, vanillic, caffeic, chlorogenic, p-coumaric, and ferulic acids, apigenin, kaempferol, myricitrin, quercetin, isoquercetin, quercetrin, rutin, catechin and epicatechin, which are widely distributed among the analyzed plant species (in over 10 species) and which have been involved in the literature in the prevention of different neurodegenerative pathologies. It is also important to mention that three of these plant species, Pistacea lentiscus, Lavandula stoechas and Thymus vulgaris, have most of the described compounds with protective properties against neurodegenerative diseases. The present work shows that the plant species that dominate the studied geographic area can provide an important source of phenolic compounds for the pharmacological and biotechnological industry to prepare extracts or isolated compounds for therapy against neurodegenerative diseases.


Assuntos
Catequina , Doenças Neurodegenerativas , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Ecossistema , Fenóis/análise
3.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38004377

RESUMO

The impact of yogurts made with starter culture bacteria (L. bulgaricus and S. thermophilus) and supplemented with ingredients (maitake mushrooms, quercetin, L-glutamine, slippery elm bark, licorice root, N-acetyl-D-glucosamine, zinc orotate, and marshmallow root) that can help treat leaky gut were investigated using the Caco-2 cell monolayer as a measure of intestinal barrier dysfunction. Milk from the same source was equally dispersed into nine pails, and the eight ingredients were randomly allocated to the eight pails. The control had no ingredients. The Caco-2 cells were treated with isoflavone genistein (negative control) and growth media (positive control). Inflammation was stimulated using an inflammatory cocktail of cytokines (interferon-γ, tumor necrosis factor-α, and interleukin-1ß) and lipopolysaccharide. The yogurt without ingredients (control yogurt) was compared to the yogurt treatments (yogurts with ingredients) that help treat leaky gut. Transepithelial electrical resistance (TEER) and paracellular permeability were measured to evaluate the integrity of the Caco-2 monolayer. Transmission electron microscopy (TEM), immunofluorescence microscopy (IM), and real-time quantitative polymerase chain reaction (RTQPCR) were applied to measure the integrity of tight junction proteins. The yogurts were subjected to gastric and intestinal digestion, and TEER was recorded. Ferrous ion chelating activity, ferric reducing potential, and DPPH radical scavenging were also examined to determine the yogurts' antioxidant capacity. Yogurt with quercetin and marshmallow root improved the antioxidant activity and TEER and had the lowest permeability in fluorescein isothiocyanate (FITC)-dextran and Lucifer yellow flux among the yogurt samples. TEM, IM, and RTQPCR revealed that yogurt enhanced tight junction proteins' localization and gene expression. Intestinal digestion of the yogurt negatively impacted inflammation-induced Caco-2 barrier dysfunction, while yogurt with quercetin, marshmallow root, maitake mushroom, and licorice root had the highest TEER values compared to the control yogurt. Yogurt fortification with quercetin, marshmallow root, maitake mushroom, and licorice root may improve functionality when dealing with intestinal barrier dysfunction.

4.
Plants (Basel) ; 12(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447094

RESUMO

White willow (Salix alba) is a medicinal plant used in folk medicine. In this study, aqueous and ethanolic willow bark extracts were obtained via ultrasonic-assisted extraction (UAE) and microwave-assisted extraction (MAE), and analyzed regarding their phytochemical (total phenolics, phenolic acids, flavonoids, and tannins) content and in vitro biological properties (antibacterial and antifungal activity, acetylcholinesterase AChE inhibitory activity and anti-inflammatory effects). The highest phenolic, tannin, and flavonoid contents were found for willow bark extracts obtained via microwave-assisted extraction using ethanol as a solvent (SA-ME). The polyphenol load of all MAE and UAE extracts was higher when conventional solid-liquid extraction was applied (ρ < 0.05). The antioxidant capacities were stronger for microwave-assisted ethanolic extracts, with the lowest IC50 values of 12 µg/mL for DPPH• and a value of 16 µg/mL for ABTS•+, whereas the conventional extraction had the highest IC50 values (22 µg/mL and 28 µg/mL, respectively). Willow bark extract showed antibacterial activity against Gram-positive bacteria S. aureus and P. aeruginosa. AChE inhibitory activity was dependent on the extraction method and solvent used, and the highest inhibition among samples was observed for SA-ME. Taken altogether, our findings suggest that willow (Salix alba) bark extract obtained via ethanolic microwave-assisted extraction is a phytochemical-rich resource with in vitro, anti-inflammatory, and AchE inhibitory properties and, therefore, potential multiple medicinal end-uses.

5.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513943

RESUMO

Functional foods have recently generated a lot of attention among consumers looking for healthy options. Studies have examined yogurt with carao to increase health benefits and probiotic characteristics. It has been determined that carao fruit and camel milk have high phenolic compound and antioxidant activity concentrations. The objective of this study was to examine if carao (0, 1.3, 2.65, and 5.3 g/L) incorporated into yogurt enhances anti-inflammatory stimulus and antioxidant activity and impacts the physio-chemical and sensory properties of camel milk yogurt. HT-29 cells were used as a model of anti-inflammatory response, including cytokine responses of IL-8 and mRNA production of IL-1ß and TNF-α in gastric digested isolated fraction. In addition, pH, titratable acidity, Streptococcus thermophilus counts and Lactobacillus bulgaricus counts of camel yogurts were examined during the fermentation process in 0, 2.5, 5, and 7 h whereas viscosity, syneresis, and radical scavenging assay evaluations were determined at hour 7. Furthermore, a consumer study was performed. Compared to control samples, the incorporation of carao into yogurts did not lead to a significant (ρ > 0.05) difference in the pH. In contrast, titratable acidity (TA), viscosity, syneresis, and antioxidant capacity significantly increased with the inclusion of 2.65 and 5.3 g/L carao, while 5.3 g/L carao significantly (ρ < 0.05) increased the counts of both bacteria. The inflammatory response of IL-8 and the level of mRNA production of IL-1ß and TNF-α was significantly (ρ < 0.05) lower with 2.65 and 5.3 g/L carao yogurt compared to control camel yogurt. Sensory attributes were not impacted by the addition of 1.3 and 2.65 g/L carao. Carao could be a possible ingredient to consider when improving the nutrition value of yogurt.

6.
Foods ; 12(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048198

RESUMO

Californian-style black olives can undergo different chemical changes during the sterilization process that can affect their sensory and phenol characteristics. Thus, these olives were stuffed with flavoured hydrocolloids and submitted to different thermal sterilization treatments to assess sensory categories. The triangular test indicated that the panellists were able to discriminate between samples from different categories according to their aromas with more than 85% success. The results indicated that the negative aroma detected by tasters was related to burn defects. The highest level of defects was found in standard olives, while the lowest was identified in the extra category. Furthermore, olives submitted to the lowest thermal sterilization treatment (extra) presented significantly higher phenol profile content, such as for hydroxytyrosol, tyrosol, oleuropein and procyanidin B1. The electronic nose (E-nose) discriminated between samples from different categories according to the specific aroma (PC1 = 82.1% and PC2 = 15.1%). The PLS-DA classified the samples with 90.9% accuracy. Furthermore, the volatile organic compounds responsible for this discrimination were creosol, copaene, benzaldehyde and diallyl disulphide. Finally, the models established by the PLS analysis indicated that the E-nose could predict olives according to their aroma and total phenol profile (RCV2 values were 0.89 and 0.92, respectively). Thus, this device could be used at the industrial level to discriminate between olives with different sensory aromas to determine those with the highest quality.

7.
PLoS One ; 18(3): e0246708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36989282

RESUMO

Silver carp (Hypophthalmichthys molitrixi) was processed by sous-vide method at different temperatures (60, 65, 70, and 75°C). Then, the microbiological quality of the processed samples was monitored during cold storage (4°C) for 21 days. The target microorganisms were Enterobacteriaceae, Lactic Acid bacteria (LAB), Pseudomonas, Psychrotrophs, and total viable count (TVC). In samples processed at 75°C, the presence of Enterobacteriaceae, Pseudomonas and Psychrotrophs were not detectable up to 15 days of storage and lactic acid bacteria were not detectable even at the end of the storage period. A radial basis function neural network (RBFNN) model was established to predict the changes in the microbial content of silver carp. In this step, the relationship between processing temperature and storage duration on microbial growth was modeled by ANNs (artificial neural networks). The optimal ANN topology for modeling Enterobacteriaceae, Pseudomonas, and Psychrotroph contained 9 neurons in the hidden layer, but it contained 15 and 14 neurons for TVC and LAB, respectively. By experimenting with the temperature of -80°C, it was revealed that the obtained ANN model has a high potential for prediction.


Assuntos
Carpas , Animais , Temperatura , Enterobacteriaceae , Temperatura Baixa
8.
Antioxidants (Basel) ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36670979

RESUMO

The aim of this work was analyzing the use of olive leaf extracts (OLE) obtained from two local Tunisian olive tree cultivars 'Chemlali' and 'Sayali' to reduce the acrylamide in Californian-style black olives. The phenol profile, antioxidant, and antibacterial activity of the two OLE extracts were evaluated. The principal phenols found were hydroxytyrosol (1809.6 ± 25.3 mg 100 g-1), oleuropein (2662.2 ± 38 mg 100 g-1) and luteolin-7-O-glucoside (438.4 ± 38 mg 100 g-1) presented higher levels in 'Sayali' variety. Small differences were observed between the two kinds of extracts used; the greatest activity of OLE was observed against S. choleraesuis, with values up to 50% inhibition. The extract of 'Chemlali' cultivar was added to the Californian-style table olive, improving its phenol content and its antioxidant characteristics without negatively affecting its sensorial characteristics; these olives showed the highest firmness and proper quality characteristics. The gastrointestinal activity on the acrylamide concentration showed a partial degradation of this compound through the digestion, although the addition of the extract does not seem influence in its gastrointestinal digestion. These findings prove the usefulness of by-products to generate a high-quality added-value product, and this would also be relevant as a step towards a more sustainable, circular economy model.

9.
Foods ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36673461

RESUMO

Hot sauces are popular peppery condiments used to add flavor and sensory excitement to gastronomical preparations. While hot sauce occupies a retail category well over a century old, a novel production method using liquor as the base preservative rather than traditional vinegar is now commercially available, and its uniqueness begs study. Hot sauces produced with tequila, rum, vodka, and bourbon were compared to traditional vinegar-based hot sauces concerning physicochemical properties, volatile compounds, microbiological quality, sensory scores, emotions, and purchase intent (PI). Under accelerated conditions, pH, titratable acidity (TA), water activity (Aw), viscosity, and color were analyzed weekly for 20 weeks, whereas rheological properties, coliforms and yeasts and molds were examined on weeks 1 and 20. Hexyl n-valerate, butanoic acid, 3-methyl-, hexyl ester, and 4-methylpentyl 3-methylbutanoate were found in high concentrations in the pepper mix as well as the hot sauce produced with vinegar. When compared to vinegar-based hot sauces, liquor-based hot sauces had similar Aw (p > 0.05), higher pH, viscosity, and L* values and lower TA, a*, and b* values (p < 0.05). Samples formulated with liquors increased the relaxation exponent derived from G' values having a greater paste formation when compared to vinegar-based hot sauces. The sensory evaluation was carried out in Honduras. The liquor-based hot sauces had a significant (p < 0.05) impact on emotion and wellness terms. Bourbon and tequila samples had higher ratings than control samples in several wellness and emotion responses (active, energetic, enthusiastic, good, curious, pleased, stimulated, and wild). Adventurous, joyful, free, worried, refreshed, and healthy scores were not significantly (p > 0.05) different among treatments.

10.
Foods ; 13(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38201115

RESUMO

The aim of this work is to discriminate between the volatile org9anic compound (VOC) characteristics of different qualities of green coffee beans (Coffea arabica) using two analysis approaches to classify the fresh product. High-quality coffee presented the highest values for positive attributes, the highest of which being fruity, herbal, and sweet. Low-quality samples showed negative attributes related to roasted, smoky, and abnormal fermentation. Alcohols and aromatic compounds were most abundant in the high-quality samples, while carboxylic acids, pyrazines, and pyridines were most abundant in the samples of low quality. The VOCs with positive attributes were phenylethyl alcohol, nonanal and 2-methyl-propanoic acid, and octyl ester, while those with negative attributes were pyridine, octanoic acid, and dimethyl sulfide. The aroma quality of fresh coffee beans was also discriminated using E-nose instruments. The PLS-DA model obtained from the E-nose data was able to classify the different qualities of green coffee beans and explained 96.9% of the total variance. A PLS chemometric approach was evaluated for quantifying the fruity aroma of the green coffee beans, obtaining an RP2 of 0.88. Thus, it can be concluded that the E-nose represents an accurate, inexpensive, and non-destructive device for discriminating between different coffee qualities during processing.

11.
Foods ; 11(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35954071

RESUMO

Carao (Cassia grandis) is an America native plant characterized by its high iron content. This particular property allows its use as a natural additive to fix the black colour in California-style black olives, while masking its unpleasant aroma by stuffing olives with flavoured hydrocolloid. The tasting panel evaluated olives filled with unflavoured hydrocolloid with a fruity aroma, classified them as an extra category. Olives with the Carao addition presented a positive aroma, but also showed negative sensory attributes such as cheese, fermented and metallic flavours/aromas. The aroma of lyophilized Carao was better than the fresh one. The 'Mojo picón' aroma masked defective olives, allowing their classification from the second to the first commercial category. The volatile compounds belonged to the following families: terpenes, hydrocarbons, and oxygenated compounds, while the minor ones were alcohols and acid derivatives. The main volatile compounds identified were dialyl disulphide and 3-methyl-butanoic acid; among the minor ones were 2,4-dimethyl-hexane and dimethyl-silanediol and nonanal. Addition of fresh Carao increased the unpleasant aroma provoked by 3-methyl-butanoic acid, 2-methyl-butanoic acid and (E)-2-Decenal. Finally, an electronic device was able to discriminate these aromas and the results obtained agreed with those of the tasting panel and the volatile compounds.

12.
Front Microbiol ; 13: 897178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602089

RESUMO

The chemical composition of the brine for Spanish-style table olives plays a crucial role during the fermentation process. Traditional laboratory analysis requires a high consumption of reagents, highly qualified personnel, sophisticated equipment, long analysis times, and large amounts of samples. Analysis carried out using an electronic nose (E-nose) offers an alternative, non-destructive technique and is useful in determining alterations in brines caused by microorganisms. In the present research, nine mold strains isolated from spoiled olives were inoculated in synthetic brines to determine the effect of microbial development on sensory quality, volatile profile, and the capacity of E-nose to discriminate altered brines from the healthy ones. The brines inoculated with the mold strains presented negative attributes related to aromas of mold, wood, leather, rancidity and, organic solvents among others. The highest intensity of defect was presented by the brines inoculated with the strains Galactomyces geotricum (G.G.2); three Penicillium expansum (P.E.3, P.E.4, and P.E.20); one Penicillium glabrum (P.G.19); three Aspergillus flavus (A.F.9, A.F.18, and A.F.21); and one Fusarium solani (F.S.11). A total of 19 volatile compounds were identified by gas chromatography. Sensory analysis allowed us to classify the synthetic brines based on the degree of alteration produced by the mold strains used. Also, the E-nose data were able to discriminate the inoculated brines regardless of the intensity of the defect. These results demonstrate the capacity of the E-nose to discriminate alterations in brines produced by molds, thereby making it a useful tool to be applied during the elaboration process to detect early alterations in table olive fermentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...